Phototactic behaviour of the archaebacterial Natronobacterium pharaonis
نویسندگان
چکیده
منابع مشابه
Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis.
Pharaonis halorhodopsin is a light-driven transport system for chloride, similarly to the previously described halorhodopsin, but we find that it transports nitrate as effectively as chloride. We studied the photoreactions of the purified, detergent-solubilized pharaonis pigment with a gated multichannel analyzer. At a physiological salt concentration (4 M NaCl), the absorption spectra and rate...
متن کاملThe role of the ocelli in the phototactic behaviour of the haematophagous bug Triatoma infestans.
In addition to compound eyes, most adult insects posses two or three simple eyes, the ocelli. The function of these photoreceptors remains elusive in most cases. Triatomine bugs posses two well-developed ocelli, located in a latero-dorsal position, behind the compound eyes. We tested the role of the ocelli in the phototactic behaviour of Triatoma infestans, by measuring the time spent by adult ...
متن کاملThe archaebacterial origin of eukaryotes.
The origin of the eukaryotic genetic apparatus is thought to be central to understanding the evolution of the eukaryotic cell. Disagreement about the source of the relevant genes has spawned competing hypotheses for the origins of the eukaryote nuclear lineage. The iconic rooted 3-domains tree of life shows eukaryotes and archaebacteria as separate groups that share a common ancestor to the exc...
متن کاملPhototactic Supersmarticles
Smarticles, or smart active particles, are small robots equipped with only basic movement and sensing abilities that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. We show that an ensembl...
متن کاملEukaryotic Evolution: The Importance of Being Archaebacterial
Approximately half of all eukaryotic genes show signs of prokaryotic origin. Genes derived from eubacteria are more abundant than those from archaebacteria, but the latter are functionally more important. This supports archaebacteria as founding ancestors of the eukaryotic nucleus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 1994
ISSN: 0014-5793
DOI: 10.1016/0014-5793(94)80183-5